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Abstract. Small angle neutron scattering of polyacrylamide solutions and gels is presented for different
polymer and cross link concentrations. The gels are analyzed in connection with their elastic properties.
For less than 11% of polymer concentration and for small cross link contents cx, it was found that the
gels are no more heterogeneous than the solutions. This corresponds to the range of cx where the elastic
modulus increases with cx. For larger cross link contents when the elastic modulus decreases if cx increases,
the sample appears to be strongly heterogeneous with a large size distribution of the inhomogeneities. The
results are compared with the recent model of Oshmyan and Benguigui of the elastic properties of the
polyacrylamide gels. Thus a relation can be proposed between the observation of the inhomogeneities by

scattering and the mechanical properties

PACS. 61.41.4+e Polymers, elastomers, and plastics — 61.12.-q Neutron diffraction and scattering —

62.20.-x Mechanical properties of solids

1 Introduction

It is now well known that polymer gels exhibit important
heterogeneities additional to those of polymer solutions
i.e. the density of the cross linking has correlated spatial
fluctuations, which are a memory of different processes oc-
curring during one or another synthesis of the network [1].
We consider here polyacrylamide gels made from copoly-
merisation of monomers (acrylamide) and tetrafunction-
nal agent (bisacrylamide). These gels have been widely
studied and in particular their degree of heterogeneity was
observed and studied by a variety of techniques [2-5]. A
general study of the heterogeneities is not the aim of this
paper but rather on the relation between the structure
and the elastic behavior. Recently, a theoretical model of
heterogeneity was proposed by Oshmyan and Benguigui[6]
in order to explain the very particular elastic properties
of these gels [7]. The basis of the model is that the forma-
tion of inhomogeneities is due to different kinetics of the
polymer chains formation and of the cross linking process.

Let us recall the particular elastic properties: they lie
in the dependence of the modulus (either the shear mod-
ulus G or the Young modulus Y, with Y = 3G at small
deformations) upon the density of the crosslinks. In gen-
eral G is an increasing function of the relative amount of
the cross linking agent c¢x (cx is defined as the ratio of
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Fig. 1. Young modulus of polyacrylamide gels versus the cross
link content on polymer content (w/w), cx. The different curves
are for different polymer concentration, ¢, as indicated near
each curve. Note that for ¢, < 11%, the Y (cx) curves begin by
an increase and decrease after a maximum.

the cross link agent weight to the weight of monomers).
The rubber elasticity theory predicts a linear relation [8].
However, in the case of polyacrylamide gels, the elastic
behavior is completely different, as seen in Figure 1. If
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the concentration in monomers ¢, (in weight per total
weight of the sample) is less than 11%, Y as a function of
¢x exhibits a maximum. Inside the range ¢, < 11%, the
maximum is well pronounced for larger values of cj,.

One of the conclusions of the Oshmyan and
Benguigui model (which is good only for samples exhibit-
ing a maximum in Y') is that if dY/dex > 0, the density
fluctuations are weak such that the gel is practically ho-
mogeneous whereas if dY/de, < 0, the gel is strongly het-
erogeneous. The goal of this work is to observe directly the
degree of heterogeneity of the gels in the different regimes
of Y (ex). This can be done by neutron scattering at small
angles (SANS).

Before presenting our results, we recall that in the
past, such degree of heterogeneity, which can be associ-
ated with the structure of the gels, has been studied by
several teams. We mention the extended work of Hecht
et al. [5] and a more recent by Cohen et al. [4] by X-rays.
In the first case it was concluded that in the heteroge-
neous gels, the range of the size distribution is very large,
from 5 to several thousands of Angstroms. In the second
case, the X-ray scattering was interpreted on the basis of
inhomogeneties having approximately the same radius of
gyration R (considered by the authors of Ref. [4] as the
mean radius of gyration). R was found to be of the order
of several hundred of Angstroms and to decrease if the
amount of the cross link agent ¢y is increased.

2 Experimental

The gels were prepared as described in reference [7], by
mixing the solvent (in the present case, heavy water to
perform neutron scattering), the acrylamide monomers,
the cross linking agent, N, N’-methylenebis acrylamide
and adding ammonium persulfate and TEMED as cat-
alysts. The values of the Young modulus displayed in
Figure 1 were obtained with regular water as solvent and
we checked that elastic modulus is not modified when us-
ing heavy water.

The SANS measurements were performed at the Lab-
oratoire Léon Brillouin (LLB Saclay) using the spectrom-
eter PACE. We use a neutron wavelength of 10 A and
the scattering vector varies from 0.003 to 0.12 A~!. For
experimental details, see for example reference [9].

We selected three kinds of samples: samples A are the
polymer solutions without cross linking molecules. Sam-
ples B are gels with dY/dex > 0, with ¢, = 2.7% and dif-
ferent ¢, (from 5.6% to 11%). Samples C are gels ¢x = 8%
and different ¢,, with dY/dex < 0. For the samples with
¢p = 11%, dY/dex > 0.

3 Results

We recall that our main interest is to follow the effect
of cross linking density with respect to the different me-
chanical behavior. The measurements of the solutions were
made only to check the quality of the polymer solutions.
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Fig. 2. Scattered intensity (arbitrary units) of a sample with
polymer concentration of ¢, = 6.7% for various cross link
contents cx: ¢x = 0% (A), ex = 2.7% (B), cx = 8% (C).

We compare (in a log-log plot) the scattered intensity
I(q) versus the scattering vector ¢ for three samples A
(ex = 0%), B (cx =2.7%) and C (¢x = 8%) for ¢, = 6.7%
which is typical of the case ¢, < 11% (Fig. 2), and for
cp = 11% (Fig. 3).

In Figure 2, we remark three features in the scattered
intensity of the samples ¢, = 6.7%.

Firstly in the solution (¢x = 0%), I(q) increases
strongly when ¢ decreases. Such low up turns are not al-
ways observed in polymer semi dilute solutions but ap-
pears relatively frequently [1]. It is particularly visible by
light scattering and often is called the Benoit-Picot effect.
Its origin is still unclear. But it can be interpreted by ei-
ther association between chains or unexplained long range
density fluctuations in the solution. For larger ¢, the scat-
tered intensity is as expected for a polymer semi-dilute
solution: one has at intermediate g a “shoulder” and a
decrease at large g (see below).

Secondly, the curve I(q) of the sample B (¢x = 2.7%) is
almost identical with of the solution. We can already con-
clude that the gel process with low ¢y does not introduce
a noticeable amount of new heterogeneity.

Thirdly, for the sample C (¢x = 8%), the intensity
curve is now different from the two preceding cases. The
intensity I(q) increases continuously when ¢ decreases. In
particular the “plateau” or more precisely the “shoulder”
is no longer visible. Our interpretation is that now the
scattering is due to additional inhomogeneities produced
by the cross linking procedure. The intensity of this scat-
tering is so large that the thermal fluctuations (character-
istic of the “plateau”) are no longer visible. This scattering
cannot be attributed to inhomogeneities with a well defi-
nite size but rather to a large range of sizes. In agreement
with reference [5], the range is rather large: from our win-
dow of scattered wave vectors, it can be estimated from
10 to 1000 A.
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Fig. 3. As in Figure 2 for ¢, = 11%.

In Figure 3, the ¢, = 11% samples are different from
the other gels only when the cross link amount has the
intermediate value 2.7%. The solution (¢ = 0%) is like
the other solutions and for ¢y = 8%, the gel is also simi-
lar to the other gels. The ¢, = 2.7% gel has a particular
behavior: the plateau is still visible but the way I(q) de-
creases at large ¢ is intermediate between the solution and
the completely heterogeneous gels. And at low ¢, the scat-
tered intensity shows a unique dependence: it is lower than
that of the solution suggesting a different structure.

4 Analysis and fit of the data
4.1 Samples A and B

We analyze together the solutions and the samples B since
the scattering curves are very near. We suppose that we
have two regimes. At low ¢, we can adopt the expression
proposed by Koberstein et al. [10] for the Benoit-Picot
effect. They use the so called Debye-Bueche expression
which assumes an exponential correlation function for the
density fluctuations and describes a two density random
medium with sharp interface:

I(q) =

T =F g

where = is a characteristic length.
At larger g, we suppose that I(g) is given by a
Lorentzian function:
as
I1(q) = —— 2
@) = % @)

where £ is the correlation length, as for a semi-dilute so-
lution [11]. At even larger g, for g > 1, it is known that
I(q) is proportional to ¢~%/3, so we do not use the last
experimental points for the fit. The experimental curves
were fitted only with the expression given by the sum of

(1) and (2).
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Fig. 4. (a) Fit of the scattered intensity of a solution (¢, =
6.7%) with I(q) = (2.1 x 107'%)/¢* +0.16/(1 4 400¢°). (b) Fit
of the scattered intensity of a gel (¢, = 6.7% and cx = 2.7%)
with I(g) = 13/(1 + (330¢%))® + 0.21/(1 + 484¢%).

For some of the samples, the fit gives values of the
unknown parameters of (1), = and a1, with so large in-
certitude such that the values of the parameters have no
meaning. This signals the fact that in the experimental
range of ¢, a correct fit can be obtained only in the condi-
tion ¢Z > 1 such that in this range of low ¢, I(q) o< ¢~ %.
In such a case only the ratio a1/ =% can be determined
by the fit. In Figure 4a, we show the experimental results
with the curve obtained from the fit for the solutions and
in Figure 4b for a gel.

The values of = that we succeeded to determined are
around 300—500 A. The correlation length £ takes value
between 25 and 12 A and varies with the polymer concen-

tration in agreement with the theoretical prevision [11]
—3/4
Eoxep .

In summary, the gels with low concentration of the
cross link agent which corresponds to an increase of the
Young modulus Y with ¢y, are very similar to the solutions
meaning that the cross linking process does not modify too
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Fig. 5. Fit of the scattered intensity with equation (3) for two
C gels with ¢x = 8% (a) ¢, =6.7% (b) ¢p, = 11%.

much their structure. However, there is an exception with
the sample with ¢, = 11% for which the behavior at large
q is closer to that of the samples C.

4.2 Samples C (cx = 8%)

These samples are highly heterogeneous. At low g, it is
difficult to decide whether the increase in I(q) is a result
of the Benoit-Picot effect as in the solutions (samples A)
or is related to the gel formation. Here, we had to choose
a new empirical expression in order to fit the results

I(q):q71+—+d. (3)

This expression gives a very good fit for all gels (Fig. 5).
First we took k1 = 4 (we shall explain this choice below)
and we found from the fit values of ks between 1.5 and
1.6 depending of ¢,. If now k; is taken as a free param-
eter of the fit, we find k; = 3.8 and ko = 1.4 with only
a small improvement in the quality of the fit. The coef-
ficient a3 is always much larger that the quantity a;/=4
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for the solutions; this gives ground to think that the low
q scattering is not due to the Benoit-Picot effect but is
characteristic of the gels. The constant d is very small
and is probably the indication that the intensity scattered
at large ¢’s decreases very slowly when ¢ increases. In the
summary, the C gels with the unusual mechanical proper-
ties (dY/dex < 0), behave differently than the gels of the
B kind.

5 Interpretation

We can very tentatively interpret the preceding results
concerning the samples C on the basis of the good fit of
the experimental results with (3). We emphasis that the
following analysis is only a first one and needs to receive
confirmation. In particular, one has no precise model to
explain the apparition of a polydisperse particle size distri-
bution. The heterogeneous regions may be associated into
two main groups. Those of the first group, have very large
sizes (larger than the inverse of the smallest ¢ vector of
our window, 1/(3 x 1073) A) and the second is responsible
for the very long tail in I(gq) (second term in (3)). About
the third term in (3), it corresponds to even smaller scale
fluctuations or objects which can be nested in the inner
structure of the large inhomogeneities.

About the first group of heterogeneous regions of very
large sizes, it is known, from the theory of scattering by
compact particles (Porod law [12]), that the scattered in-
tensity decreases as ¢~* for Ry > 1 where R, is the
radius of gyration of the particles. Even when it is taken
as a free parameter, k1 remains near 4. This confirms the
choice k1 = 4.

The analysis of the properties of the second group of
heterogeneities can be made only qualitatively. It would be
very interesting to find the size distribution of the second
group. But this does not seem possible to do quantitatively
because the intensity scattered by one heterogeneous re-
gion depends not only on its size but also on its density.

Only for illustrative purposes, we calculate below the
scattering of an hypothetical ensemble of regions with a
distribution of size R

p(R) = AR™™ (4)

where p(R) is the number of regions with radius of gy-
ration between R and dR, and A is constant. If the re-
gions are diluted enough, we can use a Guinier law [13]
exp(—¢*R?) for the scattering and if correlations are im-
portant, we can use a function f(q?R?) which accounts for
repulsion between regions. In both case

I(g)=A / p(R)R®f(¢*R?)dR (5)
giving
A
I(q) o = (6)
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If for the intermediate values of ¢ (corresponding to the
second term in (3)) we have an exponent ko = 1.5, this cor-
responds to m = 5.5. This simple argument shows that the
exact size distribution is a very rapidly decreasing func-
tion of R and that if I(q) is approximated by a power
function the exponent might be rather large (between 5
and 7).

In conclusion of the analysis of the very heterogeneous
samples (the C series), one can propose the tentative fol-
lowing picture. On the one hand, there is a group of very
large heterogeneities (may be due to coalescence of smaller
regions or like in other gels as a consequence of the gel for-
mation) which gives the main contribution to the small ¢
scattering. On the other hand, besides these large hetero-
geneities, the polyacrylamide gels of type C are also char-
acterized by a very large distribution of smaller regions
with strong increase towards the smallest size.

6 Comparison with a model

The final question we want to address is how the present
results can be compared with the model of Oshmyan and
Benguigui built initially to explain the elastic behavior.
We recall that in a composite material with well sepa-
rated spherical inclusions, as long as the total volume of
the inclusion is smaller than say 20%, the effective elastic
modulus is practically equal to that of the matrix. The
purpose of the model was to explain the maximum in Y
observed in Figure 1. The answer is given by competi-
tion between two processes: one giving an increase of Y
when ¢y as classically expected and the other producing a
depletion of the matrix in polymer. Consequently, the ma-
trix network cannot include all the cross linking molecules
and this gives the decrease of the effective modulus. The
model remains qualitatively valid whatever the real shape
and size of the heterogeneous regions, at the condition
that they do not touch and can be seen as independent.

In this model, it is assumed that the heterogeneous
samples can be described by spheres of different sizes
which fill all the volume. The type of filling is not im-
portant but each sphere is divided in two regions: an in-
ternal sphere of the stiff component and a surrounding
shell of soft matter, and the volume ratio between the two
components is the same for all the spheres. The size distri-
bution does not need to be specified but the model implies
necessarily a broad size distribution. This is effectively ob-
served in the SANS, directly on the curves as well as via
fitting. In the Appendix, we give an example of filling the
space by spheres of decreasing radii and this gives an ex-
ponential size distribution with a large exponent, between
5 and 6. This is roughly in agreement with our qualitative
discussion in the preceding section. In summary, direct
observation as well fitting agree with the predictions of
the model of composite material as used by Oshmyan and
Benguigui for the effective modulus.
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7 Conclusion

We measured the small angle neutron scattering of vari-
ous poyacrylamide solutions and gels. It was found that
the solutions have the expected behavior for the scatter-
ing intensity if one includes the Benoit-Picot effect. The
discussion of this effect is not the scope of the paper and
the data of the solutions have been given only for com-
parison with the gels. For gels (samples B) with a small
amount of cross link (2.7%) there is almost no difference
with the solutions, except for the largest amount of poly-
mer (11%). But when the amount of cross link reaches 8%,
the gels (samples C) appear to be more heterogeneous with
a much large distribution of sizes. We proposed to classify
the inhomogeneities into two groups: one with character-
istic sizes above 300 A and the other with a very broad
size distribution until very small region of about 10 A.
Our main results are that the differences observed in the
scattering of the two kinds of gels, B and C, coincide with
the differences in their mechanical properties. Namely, for
¢p < 11%, the variation of the Young modulus with the
cross link content is different being positive for B gels (the
classical expectation) and the reverse negative for the C
gels. This was explained by Oshmyan and Benguigui as-
suming that the matrix (the connected majority phase) is
depleted from cross links which concentrate in clusters of
all sizes. This agrees qualitatively well with the observa-
tions of the heterogeneous structure using scattering. We
thus can relate the structure of the gel and its mechanical
behavior.

One of us (L.B.) thanks V.Oshmyan for useful discussions and
for his help in the calculation presented in the Appendix. He
thanks also the fund for the Promotion of Research at Technion
for support of this research.

Appendix: An example of space filling
by spheres

In the first step of the filling, one puts spheres of radius
unity, with their centers at the sites of a simple cubic
lattice (lattice constant equal to 2). The filling coefficient
is given by the volume of one sphere divided by the volume
of one unit cell, i.e. @« = 7/6. In the second step, one fills
the space between the spheres by spheres with radius rq,
with 71 = 1/n and the volume of one of these spheres is
v1 = 47/3n°. The following steps are similar such that at
the step k, one fills the residual space (1 — a)* by spheres
with radius r, = 1/ n*. The number of spheres introduced
at the step k is No(k), given by

(1—a)*

Nok) = T 31 /me (A1)
Moy = L= (A2)

No(k) is the discrete size distribution, giving the number
of spheres with size vy.
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To replace this discrete distribution by a step distribu-
tion, one defines two volumes v1 and vo: v1 = (vVi—1+vg)/2
and vy = (v +vk+1)/2, such that v1 > v > va. The num-
ber of spheres with volumes between v; and vo in the step
distribution is

N(k) = UNO_(]Z) (A.3)
~2(1—a)Fnd
N(k) (75 = 1) (052 (A4)
From the expression vy, = (47/3)n*, one has
ko In(4m/3) —In(vg) (A5)

3ln(n)

Writing that (1 — a)* = exp(kIn(1 — a)), one gets (1 —
a)¥ proportional to (vy)*, where s = —In(1 — «a)/(3In(n)).
Finally it is found that N (k) is proportional to (vg)~® with

In(1 — «)

b= Sy

(A.6)

For k large enough, one can consider the step distribution
as continuous with a distribution N(r) oc 773, Since 2 <
n < 0o, the exponent 3b is between 5 and 6.
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